2021 (JUNE)

MATHEMATICS HONOURS

MAT-309

(Metric Space, Calculus of Variation & Rigid Dynamics)

Full Marks: 50

The figures in the margin indicates full marks for the questions Answer all the questions.

SECTION-A

Answers any five questions:

 $5 \times 5 = 25$

- 1. Define an open set and prove that a subset *G* of a metric space *X* is open if and only if it is a union of open spheres.
- 2. Let *X* be a metric space. Then prove that
 - a) any union of open sets in X is open
 - b) any finite intersection of open sets in *X* is open.
- 3. Show that the trivial metric on a set X is a metric i.e. the distinct function $d: X * X \to R$ defined by

$$d(a,b) = \begin{cases} 1 & if \ a \neq b \\ 0 & if \ a = b \end{cases}$$

is a metric.

- 4. Prove that a subset F of a metric space X is closed if and only its compliment F' is open.
- 5. State and prove Holder's Inequality.
- 6. Define a complete metric space. Prove that a subspace *Y* of a complete metric space *X* is complete if and only if it is closed.
- 7. State and prove Cantor's Intersection Theorem.
- 8. Prove that a mapping f from a metric space X into a metric space Y is continuous if and only if $f^{-1}(G)$ is open in X whenever G is open in Y.
- 9. Define the following:
 - i) Homeomorphism
 - ii) Nowhere dense
 - iii) Boundary Point
 - iv) Dense Subset
 - v) Neighbourhood of a point.
- 10. Show that a Cauchy sequence is convergent if it has a convergent subsequence.

SECTION-B

Answer any five questions:

 $5 \times 5 = 25$

11. State and prove the Branchistochrone problem in Calculus of Variation.

12. Find the extremals of the functional

$$\int_0^{\pi/2} \left\{ 2xy + \left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 \right\} dt$$
with conditions $x(0) = 0, \qquad x(\pi/2) = -1$

$$y(0) = 0, \qquad y(\pi/2) = 1$$

- 13. State and prove the theorem of parallel axes on a rigid body.
- 14. State D' Alembert's Principle and discuss the general equation of motion of a rigid body using this principle.
- 15. If a rigid body swings under gravity from a fixed horizontal axis, show that the time of complete oscillation is

$$2\pi\sqrt{\frac{R^2}{h_g}}$$
, where R is its radius

of gyration about the fixed axis and h is the distance between the fixed axis and the centre of inertia of the body.

- 16. A solid homogeneous cone of height h and vertical angle $2 \propto$ oscilates about a horizontal axis through its vertex. Show that the length of simple pendulum is $\frac{1}{5}h(4 + tan^2 \propto)$.
- 17. A rough uniform board of mass *m* and length 2*a* rest on a smooth horizontal plane and a man of mass *M* walks on it from one end to other. Find the distance through which the board moves in this time
- 18. A uniform sphere rolls down an inclined plane rough enough to prevent any sliding, discuss the motion.
- 19. Show that the momental ellipsoid at the centre of an ellipsoid is $(b^2 + c^2)x^2 + (a^2 + c^2)y^2 + (a^2 + b^2)z^2 = constant$.
- 20. Find the equation of motion in two dimension when the forces acting on the body are finite.
