2021 (JUNE)

MATHEMATICS HONOURS

MAT-310

Special Theory of Relativity & Tensor

Full Marks: 50

The figures in the margin indicates full marks for the questions Answer all the questions.

SECTION-A

Question Nos. 1 & 2 are compulsory and choose any 3 (three) questions from the remaining of Section-A

1. a) The basic theory of field is governed by:

1x5=5

- i) Laplace Transformation
- ii) Lorentz Transformation
- iii) Legendre's Transformation
- iv) Lagrange's Transformation
- b) Lorentz Transformation reduces to Galilean one if:
 - i) v = c
 - ii) $v \ll c$
 - iii) $v \gg c$
 - iv) None of the above.
- c) Aberration of light from stars is caused due to:
 - i) the travelling of light in the atmosphere
 - ii) the scattering of light by the air particles
 - iii) elliptical orbit of the earth around the sun
 - iv) None of the above.
- d) The relation between momentum and energy is:
 - i) $E^2 = p^2 c^2 m_0^2 c^4$
 - ii) $E^2 = p^2 c^2 m_0^2 c^2$
 - iii) $E^2 = p^2 c^2 + m_0^2 c^4$
 - iv) $E^2 = p^2 c^2 + m_0^2 c^2$
- e) The resultant of two velocities of light each of which is less than c is also:
 - i) greater than c
 - ii) equal to c
 - iii) $v^2 > c^2$
 - iv) less than c.
- 2. a) What do you mean by binding energy?

2

4

b) Calculate the binding energy of one helium nucleus, if the mass of a hydrogen atom is 1.00814 amu and that of a helium atom is 4.00388 amu.

3

3

- 3. a) Prove that $m = \frac{m_0}{\left(1 \frac{u^2}{v^2}\right)^{1/2}}$, where the symbols have their usual notations.
 - b) The length of a rocket ship is 100 metres on the ground. When it is in flight its length observed on the ground is 99 metres. Find the speed of the rocket.
- 4. a) Show that the apparent length is contracted by the factor $\sqrt{1-\frac{u^2}{v^2}}$ in the direction of relative motion (l' < l)
 - b) Show that is $x^2 + y^2 + z^2 c^2 t^2$ Lorentz invariant.
- 5. a) Prove that $\left(p^2 \frac{E^2}{c^2}\right)$ is Lorentz invariant.
 - b) Suppose the half-life of a certain particle is 10^{-7} second, when it is at rest. What will be its half-life when it is travelling with a speed of 0.99c?
- 6. a) Deduce the transformation equations for momentum?
 - b) The rest mass of an electron is 9×10^{-7} gm. What will be mass if it were moving with velocity $\frac{4}{5}$ times the speed of the light?

SECTION-B

Questions No. 7 is compulsory and any 2 (two) questions from the remaining Section-B

- 7. a) What is the Contravariant tensor of rank one or first order?
 - b) Define the Kronecker delta.
 - c) Write the term of the following indicated sums $\frac{\delta}{\delta x^k} (\sqrt{(g)} A^k), N = 3$.
 - d) Write the law of transformation for the tensor B_{jk}^k .
 - e) What is symmetric tensor? 1x5=5
- 8. The outer product of two tensors in a tensor whose rank (or order) is the sum of the ranks of the two tensors.
- 9. A symmetry tensor of rank two has at most $\frac{1}{2}N(N+1)$ different components in V_N .
- 10. a) If A_{ij} is a skew-symmetric tensor. Prove that $\left(\delta_j^i \delta_l^k + \delta_l^i \delta_j^k\right) A_{ik} = 0$
 - b) Suppose g_{ij} and g^{ij} are reciprocal symmetric tensors of the second order.

Then prove that
$$g^{ij} \frac{\delta g_{ij}}{\delta x^k} + g_{ij} \frac{\delta g^{ij}}{\delta x^k} = 0$$
. $3+2=5$
