2021 (JUNE)

MATHEMATICS HONOURS

MAT-312

(Optional-Spherical Trigonometry and Astronomy)

Theory

Full Marks: 50

The figures in the margin indicates full marks for the questions Answer all the questions.

1. Choose and rewrite the correct answer for each of the following:

1x5=5

- a) In a spherical triangle ABC, the sum A+B+C is
 - i) greater than 0 and less than π
 - ii) greater than π and less than 2π
 - iii) greater than 2π and less than 3π
 - iv) equal to π
- b) The spherical excess (E) of a spherical triangle ABC is

i)
$$A+B+C+\pi$$

ii)
$$A+B+C+\frac{\pi}{2}$$

iii)
$$A+B+C-\pi$$

iv)
$$A+B+C-\frac{\pi}{2}$$

- c) The sun is at the first point of Libra on the
 - i) Vernal equinox
 - ii) Autumnal solstice
 - iii) Winter solstice
 - iv) Summer solstice
- d) The right ascension of the sun on the 23rd September is
 - i) 0°
 - ii) 23°27′
 - iii) 90°
 - iv) 180°
- e) The area of a spherical quadrilateral ABCD is

i)
$$(A + B + C + D - \pi)r$$

ii)
$$\left(A+B+C+D-\frac{\pi}{2}\right)r^2$$

iii)
$$(A + B + C + D - 2\pi)r^2$$

iv)
$$(A + B + C + D - 2\pi)r^2$$

2. Write very short answer for each of the following:

1x6=6

- a) Write the sine formula in a spherical triangle.
- b) Name the two kinds of parallax
- c) Distinguish between annual aberration and diurnal aberration.
- d) What is the spherical excess of a spherical triangle ABC?
- e) What is Earth's way?
- f) What is precession?

3. Write short answer for any three of the following:

3x3=9

a) In any equilateral spherical triangle *ABC*, show that

$$secA = 1 + sec \alpha$$

- b) State Kepler's three laws of planetary motion.
- c) In a spherical triangle *ABC* in which angle *C* is a right angle, prove that $\sin(c + a)\sin(c a) = \sin^2 b \cos^2 a = \cos^2 A \sin^2 c$,
- d) Show that the sum of the three sides of a spherical triangle is less than the circumference of a great circle.
- e) Deduce Kepler's third law from Newton's law of gravitation.

4. Answer any two questions:

6x2=12

a) In any spherical triangle ABC, Show that

$$\frac{\sin(a+b)}{\sin c} = \frac{\cos A + \cos B}{1 - \cos C}$$

- b) State and prove a cotangent formula in a spherical triangle.
- c) In a spherical triangle *ABC*, prove that $\cos a = \cos b \cos c + \sin b \sin c \cos A$

5. Answer any one question:

6x1=6

- a) If two stars (α, δ) and (α_1, δ_1) rise at the same moment at a place in latitude ϕ , show that $\cot^2 \phi \sin^2 (\alpha_1 \alpha) = \tan^2 \delta + \tan^2 \delta_1 2 \tan \delta \tan \delta_1 \cos(\alpha_1 \alpha)$.
- b) Two stars (α_1, δ_1) and (α_2, δ_2) have the same longitude; prove that $sin(\alpha_1 \alpha_2) = tan\varepsilon(\cos\alpha_1 \tan\delta_2 \cos\alpha_2 \tan\delta_1)$.

6. Answer any one question.

6x1=6

- a) Find the coefficient of refraction by Bradley's method.
- b) What do precession and nutation have in common? Explain the physical cause of nutation.

7. Answer any one question.

6x1=6

- a) Show that the apparent path of a star on account of aberration is an ellipse.
- b) Discuss the right ascension and declination due to geocentric parallax where earth is taken as spheroid.
